Noise analysis of genome-scale protein synthesis using a discrete computational model of translation.

نویسندگان

  • Julien Racle
  • Adam Jan Stefaniuk
  • Vassily Hatzimanikatis
چکیده

Noise in genetic networks has been the subject of extensive experimental and computational studies. However, very few of these studies have considered noise properties using mechanistic models that account for the discrete movement of ribosomes and RNA polymerases along their corresponding templates (messenger RNA (mRNA) and DNA). The large size of these systems, which scales with the number of genes, mRNA copies, codons per mRNA, and ribosomes, is responsible for some of the challenges. Additionally, one should be able to describe the dynamics of ribosome exchange between the free ribosome pool and those bound to mRNAs, as well as how mRNA species compete for ribosomes. We developed an efficient algorithm for stochastic simulations that addresses these issues and used it to study the contribution and trade-offs of noise to translation properties (rates, time delays, and rate-limiting steps). The algorithm scales linearly with the number of mRNA copies, which allowed us to study the importance of genome-scale competition between mRNAs for the same ribosomes. We determined that noise is minimized under conditions maximizing the specific synthesis rate. Moreover, sensitivity analysis of the stochastic system revealed the importance of the elongation rate in the resultant noise, whereas the translation initiation rate constant was more closely related to the average protein synthesis rate. We observed significant differences between our results and the noise properties of the most commonly used translation models. Overall, our studies demonstrate that the use of full mechanistic models is essential for the study of noise in translation and transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications

Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...

متن کامل

An algorithmic framework for genome-wide modeling and analysis of translation networks.

The sequencing of genomes of several organisms and advances in high throughput technologies for transcriptome and proteome analysis has allowed detailed mechanistic studies of transcription and translation using mathematical frameworks that allow integration of both sequence-specific and kinetic properties of these fundamental cellular processes. To understand how perturbations in mRNA levels a...

متن کامل

Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...

متن کامل

Pervasive white and colored noise removing from magnetotelluric time series

Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 4  شماره 

صفحات  -

تاریخ انتشار 2015